Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network

Author:

Wu Honghai1ORCID,Jin Jichong1,Ma Huahong1,Xing Ling1

Affiliation:

1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China

Abstract

With the continuous development of intelligent vehicles, people’s demand for services has also rapidly increased, leading to a sharp increase in wireless network traffic. Edge caching, due to its location advantage, can provide more efficient transmission services and become an effective method to solve the above problems. However, the current mainstream caching solutions only consider content popularity to formulate caching strategies, which can easily lead to cache redundancy between edge nodes and lead to low caching efficiency. To solve these problems, we propose a hybrid content value collaborative caching strategy based on temporal convolutional network (called THCS), which achieves mutual collaboration between different edge nodes under limited cache resources, thereby optimizing cache content and reducing content delivery latency. Specifically, the strategy first obtains accurate content popularity through temporal convolutional network (TCN), then comprehensively considers various factors to measure the hybrid content value (HCV) of cached content, and finally uses a dynamic programming algorithm to maximize the overall HCV and make optimal cache decisions. We have obtained the following conclusion through simulation experiments: compared with the benchmark scheme, THCS has improved the cache hit rate by 12.3% and reduced the content transmission delay by 16.7%.

Funder

National Natural Science Foundation of China

Program for Innovative Research Team in University of Henan Province

Key Science and the Research Program in University of Henan Province

Henan Province Science Fund for Distinguished Young Scholars

Science and Technology Research Project of Henan Province

Leading Talent in Scientific and Technological Innovation in Zhongyuan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3