Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements

Author:

Antao Sytle M.1ORCID

Affiliation:

1. Department of Earth, Energy and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Scapolite forms solid solutions between the end members marialite, Na4[Al3Si9O24]Cl = Me0, and meionite, Ca4[Al6Si6O24]CO3 = Me100. Al-Si order and chemical composition models are proposed for the scapolite solid solutions. These models predict the chemical composition, Al-Si order, and average <T–O> distances between Me0–Me100. These models are based on the observed order of clusters and on two solid solutions that meet at Me75 coupled with predicted chemical compositions and <T–O> distances. The [Na4·Cl]3+ and [NaCa3·CO3]5+ clusters are ordered between Me0–Me75, whereas the clusters [NaCa3·CO3]5+ and [Ca4·CO3]6+ are disordered from Me75–Me100. To confirm the structural model, the crystal structure of 27 scapolite samples between Me6–Me93 has been obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements. The structure was refined in space group P42/n for all the samples. The <T–O> distances indicate that the T1 (=Si), T2 (=Al), and T3 (=Si) sites are completely ordered at Me37.5, where the 1:1 ratio of [Na4·Cl]3+:[NaCa3·CO3]5+ clusters are ordered and gives rise to antiphase domain boundaries (APBs) based on Cl-CO3 order instead of Al-Si order. The presence of APBs based on Cl-CO3 order and cluster order indicate that neither space group P42/n nor I4/m are correct for the structure of scapolite, but the lower symmetry space group P42/n is a good approximation for modeling the average structure of scapolite. The complete Al-Si order at Me37.5 changes in a regular and predictable manner toward the end members: Me0, Me75, and Me100. The observed unit cell and several structural parameters show a discontinuity at Me75, where the series is divided into two. There is no structural evidence to support any phase transition in the scapolite series. The T1 site contains only Si from Me0–Me37.5; from Me37.5–Me100, Al atoms enter the T1 site and the <T1–O> distance increases linearly to Me100.

Funder

NSERC Discovery Grant

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3