Multi-Scale Characterization of Pores and Fractures in Coals with Different Coal-Body Structures from the Jincheng Mine, Qinshui Basin, Northern China

Author:

Yang Haoran1,Wang Xiaomei1ORCID,Li Rui2ORCID,Chai Pancun1,Deng Fan1,Guo Xingxing1

Affiliation:

1. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan 430074, China

2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China

Abstract

The Qinshui Basin is located in the southeast of Shanxi Province, China. It is one of the most abundant coal resources from Permo-Carboniferous North China. It is rich in coal and coalbed methane resources. However, the accumulation of coalbed methane is complex and the enrichment law has not been fully understood because of the high heterogeneity of coal reservoirs in the Qinshui Basin. The examination of dissimilarities between tectonically deformed coals (TDCs) and primary coals at multiple scales holds paramount importance in advancing our understanding of the occurrence and flow patterns of coalbed methane, and in providing guidance for exploration efforts. In the present study, the samples from the Jincheng Mine, Qinshui Basin, were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), CO2 gas adsorption and 3D X-ray micro-computed tomography. The results showed that the dominant minerals in coal were illite, kaolinite, and calcite, with minor amounts of quartz and ankerite. In comparison to primary coal, tectonism could increase the microfractures density of type A (the fracture of width ≥ 5 μm and length > 10 mm) in TDCs. In CO2 gas adsorption in mylonite coal, it was observed that the volume of micropores (<2 nm) was significantly reduced leading to a decrease in gas adsorption capacity. The result of Micro-CT scanning revealed that the minerals occurred as veins in primary coal, but as irregular aggregates in TDCs. Moreover, tectonism had a staged impact on fracture structure, which was initially closed in cataclastic coal and then formed into granulated coal during the tectonic evolution. The effects of tectonism on coal structure had an impact on the connectivity of micropores at the micrometer scale by the destruction of the pore throat structure, increasing the heterogeneity of the reservoir. These findings help to better understand the changes in TDC structure at different scales for developing effective strategies for coalbed methane exploration and production.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Major Science and Technology Department Program of Xinjiang Uygur autonomous region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3