Zircon Internal Deformation and Its Effect on U-Pb Geochronology: A Case Study from the Himalayan High-Pressure Eclogites

Author:

Rehman Hafiz U.1ORCID

Affiliation:

1. Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan

Abstract

Zircon, with a chemical formula of ZrSiO4, is a widely used mineral for determining the crystallization age of igneous rocks. It is also used to constrain the timing of metamorphic events from its overgrowth or recrystallized domains. Furthermore, detrital zircon grains can provide information on the sedimentary provenance. Due to the trace amounts of uranium (parent) which decays into its daughter element (Pb), it is a prime geochronometer for the majority of magmatic and metamorphic rocks. With high-precision analytical instruments, such as TIMS, SIMS, and LA-ICP-MS, huge amounts of geochronological and trace element data from zircon have been generated around the globe to date. Target domains within zircon grains are analyzed to extract geochemical and geochronological records using spatially resolved techniques such as ion probes or laser ablation coupled with mass spectrometry. Before any such analysis, the zircon grains are examined for internal structures, growth zoning, and the presence of tiny inclusions. However, many researchers analyze multiple domains within single zircon grains for U-Pb isotope analysis with little regard for their internal structures, particularly crystallographic orientations. Hence, they may obtain mixed ages with variable discordance, leading to imprecise interpretation especially when the growth domains are not well-identified. Particularly, zircon grains that contain multi-growth domains or have local internal deformations within a single grain may not produce geologically meaningful age results if the analyses are conducted on mixed domains. This study presents a brief review on zircon geochronology, how to identify and visualize micro-deformations in metamorphic zircons through the EBSD analysis, and the effects of micro-deformation on age results. Examples from a case study conducted on zircons hosted in the Himalayan high-pressure eclogites are presented that show intra-grain plastically deformed domains and their effects on the corresponding age results.

Funder

JSPS Kakenhi

Publisher

MDPI AG

Reference61 articles.

1. The elements of the geological time scale;Williams;J. Geol.,1893

2. The cause and nature of radioactivity;Rutherford;Lond. Edinb. Dublin Philos. Mag. J. Sci.,1902

3. U–Pb geochronology: Its development and importance in Canada;Davis;Can. J. Earth Sci.,2023

4. Historical development of zircon geochronology;Davis;Rev. Min. Geochem.,2003

5. Isotopic composition and distribution of lead, uranium and thorium in a Precambrian granite;Tilton;Geol. Soc. Am. Bull.,1955

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3