Plagioclase Megacrysts in Mesoproterozoic Amphibolites from the New Jersey Highlands, USA: Indicators of Mixed-Source Magma and Fractionation Interruption in Anorthosite-Dominated Terrains

Author:

Gorring Matthew L.1ORCID,Volkert Richard A.2,Peck William H.3ORCID

Affiliation:

1. Department of Earth & Environmental Studies, Montclair State University, Upper Montclair, NJ 07043, USA

2. New Jersey Geological and Water Survey (Retired), Trenton, NJ 08625, USA

3. Department of Earth and Environmental Geosciences, Colgate University, Hamilton, NY 13346, USA

Abstract

Rare amphibolite in the New Jersey Highlands containing plagioclase megacrysts ≤13 cm long forms bodies 0.5 to 2 m thick that preserve a penetrative metamorphic fabric and have sharp, conformable contacts against Mesoproterozoic country rocks. The megacrystic amphibolites were emplaced as thin dikes along extensional faults between 1160 and 1130 Ma. Amphibolites contain weakly zoned, subhedral andesine megacrysts (An29–44) in a matrix of plagioclase (An18–38), magnesio-hastingsite, biotite, diopside, Fe-Ti oxides, and apatite. The whole-rock major oxide composition of the megacrystic amphibolite matrix has high TiO2 (2.07 wt.% ± 2.0%), Al2O3 (17.03 wt.% ± 0.87%), and Fe2O3t (12.84 wt.% ± 3.2%) that represents an Al-Fe-rich mafic magma type that is characteristic of anorthosite associations globally. The whole-rock, rare earth element (REE) composition of the megacrystic amphibolite matrix is characterized by enrichments in light rare earth elements (LREEs) (La/YbN = 1.73–10.69) relative to middle (MREEs) and heavy (HREEs) rare earth elements (Gd/YbN = 1.30–1.85), and most samples have small positive Eu anomalies (Eu/Eu* = 0.95–1.25). The megacrystic amphibolite matrix is also enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs) (e.g., Ba/Nb = 24–22). Megacrystic amphibolites formed through partial melting of subduction-modified lithospheric mantle that fractionated olivine and plagioclase, producing a high-Al-Fe mafic magma. Plagioclase megacrysts formed through extraction of a plagioclase-rich crystal-liquid mush from anorthosite that mixed with mafic magma and collected in the upper part of the mid-crustal magma (depth of ~20 km based on Al-in-hornblende geobarometry) chamber through flotation. Periodic tapping of this mixed source by extensional fractures led to emplacement of the amphibolites as dikes and may have interrupted the extensive fractionation and plagioclase separation necessary to form voluminous anorthosite intrusions.

Publisher

MDPI AG

Reference58 articles.

1. Ashwal, L.D. (1988). The petrogenetic significance of plagioclase megacrysts in Archean rocks. Workshop on the Deep Continental Crust of South India, The Lunar and Planetary Institute. Technical Report 88-06.

2. Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: Implications for crystallisation processes in anorthositic magma;Halama;Contrib. Mineral. Petrol.,2002

3. Origin of plagioclase-megacrystic orthopyroxene amphibolites within a Precambrian banded gneiss suite, Flekkefjord area, Vest-Agdar, South Norway;Falkum;NGU Bull.,2001

4. Giant plagioclase basalts from Northeastern Deccan Volcanic Province, India: Implications for their origin and petrogenetic significance;Talusani;Int. J. Geosci.,2012

5. Feldspar megacrysts in alkali basalts;Laughlin;Geol. Soc. Am. Bull.,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3