Intelligent Classification and Segmentation of Sandstone Thin Section Image Using a Semi-Supervised Framework and GL-SLIC

Author:

Han Yubo1,Liu Ye1

Affiliation:

1. School of Computer Science, Xi’an Shiyou University, Xi’an 710065, China

Abstract

This study presents the development and validation of a robust semi-supervised learning framework specifically designed for the automated segmentation and classification of sandstone thin section images from the Yanchang Formation in the Ordos Basin. Traditional geological image analysis methods encounter significant challenges due to the labor-intensive and error-prone nature of manual labeling, compounded by the diversity and complexity of rock thin sections. Our approach addresses these challenges by integrating the GL-SLIC algorithm, which combines Gabor filters and Local Binary Patterns for effective superpixel segmentation, laying the groundwork for advanced component identification. The primary innovation of this research is the semi-supervised learning model that utilizes a limited set of manually labeled samples to generate high-confidence pseudo labels, thereby significantly expanding the training dataset. This methodology effectively tackles the critical challenge of insufficient labeled data in geological image analysis, enhancing the model’s generalization capability from minimal initial input. Our framework improves segmentation accuracy by closely aligning superpixels with the intricate boundaries of mineral grains and pores. Additionally, it achieves substantial improvements in classification accuracy across various rock types, reaching up to 96.3% in testing scenarios. This semi-supervised approach represents a significant advancement in computational geology, providing a scalable and efficient solution for detailed petrographic analysis. It not only enhances the accuracy and efficiency of geological interpretations but also supports broader hydrocarbon exploration efforts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3