Flexible Carbon Nanotube-Based Polymer Electrode for Long-Term Electrocardiographic Recording

Author:

Chi Miao,Zhao Jingjing,Dong YingORCID,Wang Xiaohao

Abstract

The long-term monitoring of electrocardiogram (ECG) is critical for the accurate diagnosis and tracking of cardiovascular diseases (CVDs). However, the commercial Ag/AgCl electrode is not suitable for long-term monitoring due to skin allergies and signal degradation, caused by the conductive gel drying over time. In this paper, a flexible gel-free electrode, composed of a multi-wall carbon nanotube (MWCNT) and polydimethylsiloxane (PDMS), is proposed for long-term wearable ECG monitoring. To achieve uniform dispersion of MWCNTs in viscous PDMS, we developed a novel parallel solvent-assisted ultrasonic dispersion method, wherein the organic solvent n–Hexane served as a dispersion to avoid MWCNT aggregates. The properties of the MWCNT/PDMS electrode were assessed through structural characterization, contact impedance tests, ECG measurements, and biocompatibility tests. When the MWCNT weight fraction reached 5.5 wt%, the skin-electrode contact impedance of the MWCNT/PDMS electrode was lower than that of the Ag/AgCl electrode below 100 Hz. In daily ECG monitoring, the MWCNT/PDMS electrodes showed superior performance against motion artifact compared to the Ag/AgCl electrode. After seven days of wearing the MWCNT/PDMS electrode, ECG signals did not degrade and no side effects, such as skin redness and swelling, were observed. Thus, this electrode could enable long-term ECG monitoring in wearable healthcare systems.

Funder

Shenzhen Fundamental Research Funds

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. World Health Organizationhttps://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/

2. Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording

3. Capacitive Biopotential Measurement for Electrophysiological Signal Acquisition: A Review

4. Evaluation of a Capacitively-Coupled, Non-Contact (Through Clothing) Electrode or ECG Monitoring and Life Signs Detection for the Objective Force Warfighter;Lee,2004

5. Wireless and Non-contact ECG Measurement System—The “Aachen SmartChair”;Aleksandrowicz;Acta Polytech.,2007

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3