Abstract
In this study, epoxy resin (EP) composites were prepared by using molybdenum disulfide (MoS2) and helical carbon nanotubes (H-CNTs) as the antifriction and reinforcing phases, respectively. The effects of MoS2 and H-CNTs on the friction coefficient, wear amount, hardness, and elastic modulus of the composites were investigated. The tribological properties of the composites were tested using the UMT-3MT friction testing machine, non-contact three-dimensional surface profilometers, and nanoindenters. The analytical results showed that the friction coefficient of the composites initially decreased and then increased with the increase in the MoS2 content. The friction coefficient was the smallest when the MoS2 content in the EP was 6%, and the wear amount increased gradually. With the increasing content of H-CNTs, the friction coefficient of the composite material did not change significantly, although the wear amount decreased gradually. When the MoS2 and H-CNTs contents were 6% and 4%, respectively, the composite exhibited the minimum friction coefficient and a small amount of wear. Moreover, the addition of H-CNTs significantly enhanced the hardness and elastic modulus of the composites, which could be applied as materials in high-temperature and high-pressure environments where lubricants and greases do not work.
Subject
General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献