Microstructure and Thermal Insulation Property of Silica Composite Aerogel

Author:

Shang Lei,Lyu YangORCID,Han Wenbo

Abstract

Tetraethyl orthosilicate was selected as a matrix of heat insulating materials among three silanes, and an anti-infrared radiation fiber was chosen as a reinforcement for silica aerogel insulation composite. The silica aerogel was combined well and evenly distributed in the anti-infrared radiation fiber. The heat insulation effect was improved with the increase in thickness of the aerogel insulation material, as determined by the self-made aerospace insulation material insulation performance test equipment. The 15 mm and 30 mm thick thermal insulation material heated at 250 °C for 3 h, the temperatures at the cold surface were about 80 °C and 60 °C, respectively, and the temperatures at 150 mm above the cold surface were less than 60 °C and 50 °C, respectively. The silica aerogel composites with various thicknesses showed good thermal insulation stability. The silica insulation composite with a thickness of 15 mm exhibited good heat insulation performance, meets the thermal insulation requirements of general equipment compartments under low-temperature and long-term environmental conditions. The thermal conductivity of prepared silica aerogel composite was 0.0191 W·m−1·k−1 at room temperature and 0.0489 W·m−1·k−1 at 500 °C.

Funder

the National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3