Improved Performance of Graphene in Heat Dissipation when Combined with an Orientated Magnetic Carbon Fiber Skeleton under Low-Temperature Thermal Annealing

Author:

Li JingORCID,Lei Rubai,Lai Jinfeng,Chen Xuyang,Li Yang

Abstract

The high thermal conductivity and stability, outstanding mechanical properties, and low weight make graphene suitable for many applications in the realm of thermal management, especially in high integration systems. Herein, we report a high-performance, low-temperature reduced graphene oxide/magnetic carbon fiber composite film. Magnetic carbon fibers were prepared using a co-precipitation method, and the graphene oxide solution was prepared using an improved Hummers’ method. The magnetic carbon fibers were orientated by magnetite and immersed in the graphene oxide solution during filtration, followed by annealing at 800 °C. The composite film exhibited improved thermal conductivity (over 600 W/m·K) and mechanical properties (tensile strength of 37.1 MPa and bending cycle of up to 8000). The experimental results illustrate that the graphene in the composite membrane provides heat transfer channels to promote in-plane thermal conductivity, while the magnetic carbon fiber acts as a scaffold to reinforce the mechanical properties and improve the quality of the graphene. Due to the synergistic effect of the graphene and magnetic carbon, this composite has wide potential applications in heat dissipation.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3