Tourism Review Sentiment Classification Using a Bidirectional Recurrent Neural Network with an Attention Mechanism and Topic-Enriched Word Vectors

Author:

Li Qin,Li Shaobo,Hu Jie,Zhang Sen,Hu Jianjun

Abstract

Sentiment analysis of online tourist reviews is playing an increasingly important role in tourism. Accurately capturing the attitudes of tourists regarding different aspects of the scenic sites or the overall polarity of their online reviews is key to tourism analysis and application. However, the performances of current document sentiment analysis methods are not satisfactory as they either neglect the topics of the document or do not consider that not all words contribute equally to the meaning of the text. In this work, we propose a bidirectional gated recurrent unit neural network model (BiGRULA) for sentiment analysis by combining a topic model (lda2vec) and an attention mechanism. Lda2vec is used to discover all the main topics of review corpus, which are then used to enrich the word vector representation of words with context. The attention mechanism is used to learn to attribute different weights of the words to the overall meaning of the text. Experiments over 20 NewsGroup and IMDB datasets demonstrate the effectiveness of our model. Furthermore, we applied our model to hotel review data analysis, which allows us to get more coherent topics from these reviews and achieve good performance in sentiment classification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference31 articles.

1. A tourism destination recommender system using users’ sentiment and temporal dynamics

2. Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach

3. VisTravel: visualizing tourism network opinion from the user generated content

4. A Method to Assess Sustainable Mobility for Sustainable Tourism: The Case of the Public Bike Systems;Serna,2017

5. Application of Social Media Analytics: A Case of Analyzing Online Hotel Reviewshttps://www.emeraldinsight.com/doi/abs/10.1108/OIR-07-2016-0201

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3