SENS+: A Co-Existing Fabrication System for a Smart DFA Environment Based on Energy Fusion Information

Author:

Chang Teng-Wen1ORCID,Huang Hsin-Yi1ORCID,Hong Cheng-Chun1ORCID,Datta Sambit2ORCID,Nakapan Walaiporn3ORCID

Affiliation:

1. College of Design, National Yunlin University of Science and Technology, Douliou 640, Yunlin, Taiwan

2. School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Bentley, WA 6102, Australia

3. Parabolab, Bangkok 11000, Thailand

Abstract

In factories, energy conservation is a crucial issue. The co-fabrication space is a modern-day equivalent of a new factory type, and it makes use of Internet of Things (IoT) devices, such as sensors, software, and online connectivity, to keep track of various building features, analyze data, and produce reports on usage patterns and trends that can be used to improve building operations and the environment. The co-fabrication user requires dynamic and flexible space, which is different from the conventional user’s usage. Because the user composition in a co-fabrication space is dynamic and unstable, we cannot use the conventional approach to assess their usage and rentals. Prototyping necessitates a specifically designed energy-saving strategy. The research uses a “seeing–moving–seeing” design thinking framework, which enables designers to more easily convey their ideas to others through direct observation of the outcomes of their intuitive designs and the representation of their works through design media. The three components of human behavior, physical manufacture, and digital interaction are primarily the focus of this work. The computing system that connects the physical machine is created through communication between the designer and the digital interface, giving the designer control over the physical machine. It is an interactive fabrication process formed by behavior. The Sensible Energy System+ is an interactive fabrication process of virtual and real coexistence created by combining the already-existing technology, the prototype fabrication machine, and SENS. This process analyzes each step of the fabrication process and energy, fits it into the computing system mode to control the prototype fabrication machine, and reduces the problem between virtual and physical fabrication and energy consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3