The Process and Platform for Predicting PM2.5 Inhalation and Retention during Exercise

Author:

Wu Hui-Chin,Yang Ai-Lun,Chang Yue-Shan,Chang Yu-Hsiang,Abimannan SatheeshORCID

Abstract

In recent years, people have been increasingly concerned about air quality and pollution since a number of studies have proved that air pollution, especially PM2.5 (particulate matter), can affect human health drastically. Though the research on air quality prediction has become a mainstream research field, most of the studies focused only on the prediction of urban air quality and pollution. These studies did not predict the actual impact of these pollutants on people. According to the researchers’ best knowledge, the amount of polluted air inhaled by people and the amount of polluted air that remains inside their body are two important factors that affect their health. In order to predict the quantity of PM2.5 inhaled by people and what they have retained in their body, a process and a platform have been proposed in the current research work. In this research, the experimental process is as follows: (1) First, a personalized PM2.5 sensor is designed and developed to sense the quantity of PM2.5 around people. (2) Then, the Bruce protocol is applied to collect the information and calculate the relationship between heart rate and air intake under different activities. (3) The amount of PM2.5 retained in the body is calculated in this step using the International Commission on Radiological Protection (ICRP) air particle retention formula. (4) Then, a cloud platform is designed to collect people’s heart rate under different activities and PM2.5 values at respective times. (5) Finally, an APP is developed to show the daily intake of PM2.5. The result reveals that the developed app can show a person’s daily PM2.5 intake and retention in a specific population.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3