Abstract
In recent years, people have been increasingly concerned about air quality and pollution since a number of studies have proved that air pollution, especially PM2.5 (particulate matter), can affect human health drastically. Though the research on air quality prediction has become a mainstream research field, most of the studies focused only on the prediction of urban air quality and pollution. These studies did not predict the actual impact of these pollutants on people. According to the researchers’ best knowledge, the amount of polluted air inhaled by people and the amount of polluted air that remains inside their body are two important factors that affect their health. In order to predict the quantity of PM2.5 inhaled by people and what they have retained in their body, a process and a platform have been proposed in the current research work. In this research, the experimental process is as follows: (1) First, a personalized PM2.5 sensor is designed and developed to sense the quantity of PM2.5 around people. (2) Then, the Bruce protocol is applied to collect the information and calculate the relationship between heart rate and air intake under different activities. (3) The amount of PM2.5 retained in the body is calculated in this step using the International Commission on Radiological Protection (ICRP) air particle retention formula. (4) Then, a cloud platform is designed to collect people’s heart rate under different activities and PM2.5 values at respective times. (5) Finally, an APP is developed to show the daily intake of PM2.5. The result reveals that the developed app can show a person’s daily PM2.5 intake and retention in a specific population.
Funder
Ministry of Science and Technology, Taiwan
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering