Affiliation:
1. Center for New Medical Technologies, 630090 Novosibirsk, Russia
2. Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
3. Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
Abstract
Exploring the link between genetic polymorphisms in folate metabolism genes (MTHFR, MTR, and MTRR) and cardiovascular disease (CVD), this study evaluates the effect of B vitamin supplements (methylfolate, pyridoxal-5′-phosphate, and methylcobalamin) on homocysteine and lipid levels, potentially guiding personalized CVD risk management. In a randomized, double-blind, placebo-controlled trial, 54 patients aged 40–75 with elevated homocysteine and moderate LDL-C levels were divided based on MTHFR, MTR, and MTRR genetic polymorphisms. Over six months, they received either a combination of methylfolate, P5P, and methylcobalamin, or a placebo. At the 6 months follow-up, the treatment group demonstrated a significant reduction in homocysteine levels by 30.0% (95% CI: −39.7% to −20.3%) and LDL-C by 7.5% (95% CI: −10.3% to −4.7%), compared to the placebo (p < 0.01 for all). In the subgroup analysis, Homozygous Minor Allele Carriers showed a more significant reduction in homocysteine levels (48.3%, 95% CI: −62.3% to −34.3%, p < 0.01) compared to mixed allele carriers (18.6%, 95% CI: −25.6% to −11.6%, p < 0.01), with a notable intergroup difference (29.7%, 95% CI: −50.7% to −8.7%, p < 0.01). LDL-C levels decreased by 11.8% in homozygous carriers (95% CI: −15.8% to −7.8%, p < 0.01) and 4.8% in mixed allele carriers (95% CI: −6.8% to −2.8%, p < 0.01), with a significant between-group difference (7.0%, 95% CI: −13.0% to −1.0%, p < 0.01). Methylfolate, P5P, and methylcobalamin supplementation tailored to genetic profiles effectively reduced homocysteine and LDL-C levels in patients with specific MTHFR, MTR, and MTRR polymorphisms, particularly with homozygous minor allele polymorphisms.