Author:
Dou Hong-Xia,Deng Liang-Jian
Abstract
The underlying function in reproducing kernel Hilbert space (RKHS) may be degraded by outliers or deviations, resulting in a symmetry ill-posed problem. This paper proposes a nonconvex minimization model with ℓ0-quasi norm based on RKHS to depict this degraded problem. The underlying function in RKHS can be represented by the linear combination of reproducing kernels and their coefficients. Thus, we turn to estimate the related coefficients in the nonconvex minimization problem. An efficient algorithm is designed to solve the given nonconvex problem by the mathematical program with equilibrium constraints (MPEC) and proximal-based strategy. We theoretically prove that the sequences generated by the designed algorithm converge to the nonconvex problem’s local optimal solutions. Numerical experiment also demonstrates the effectiveness of the proposed method.
Funder
Scientific Research Startup Fund of Xihua University
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献