The Design and Implementation of an Improved Lightweight BLASTP on CUDA GPU

Author:

Sun Xue,Wu Chao-ChinORCID,Liu Yan-Fang

Abstract

In the field of computational biology, sequence alignment is a very important methodology. BLAST is a very common tool for performing sequence alignment in bioinformatics provided by National Center for Biotechnology Information (NCBI) in the USA. The BLAST server receives tens of thousands of queries every day on average. Among the procedures of BLAST, the hit detection process whose core architecture is a lookup table is the most time-consuming. In the latest work, a lightweight BLASTP on CUDA GPU with a hybrid query-index table was proposed for servicing the sequence query length shorter than 512, which effectively improved the query efficiency. According to the reported protein sequence length distribution, about 90% of sequences are equal to or smaller than 1024. In this paper, we propose an improved lightweight BLASTP to speed up the hit detection time for longer query sequences. The largest sequence is enlarged from 512 to 1024. As a result, one more bit is required to encode each sequence position. To meet the requirement, an extended hybrid query-index table (EHQIT) is proposed to accommodate three sequence positions in a four-byte table entry, making only one memory access sufficient to retrieve all the position information as long as the number of hits is equal to or smaller than three. Moreover, if there are more than three hits for a possible word, all the position information will be stored in contiguous table entries, which eliminates branch divergence and reduces memory space for pointers to overflow buffer. A square symmetric scoring matrix, Blosum62, is used to determine the relative score made by matching two characters in a sequence alignment. The experimental results show that for queries shorter than 512 our improved lightweight BLASTP outperforms the original lightweight BLASTP with speedups of 1.2 on average. When the number of hit overflows increases, the speedup can be as high as two. For queries shorter than 1024, our improved lightweight BLASTP can provide speedups ranging from 1.56 to 3.08 over the CUDA-BLAST. In short, the improved lightweight BLASTP can replace the original one because it can support a longer query sequence and provide better performance.

Funder

Premium Funding Project for Academic Human Resources Development in Beijing Union University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3