Research on the Detection Method of Tunnel Surface Flatness Based on Point Cloud Data

Author:

Xiang Liufu,Ding Yifan,Wei Zheng,Zhang Hao,Li Zhenguo

Abstract

The curved surface of the tunnel is symmetrical. The curved surface of the tunnel can be roughly divided into the left and right arch walls along the direction of the central axis of the tunnel. The symmetry of the tunnel needs to be analyzed when the flatness inspection of the tunnel engineering is carried out. The flatness of the initial support of the tunnel project is an important indicator of the quality inspection and acceptance of the tunnel project. The three-dimensional laser scanner (3DLS) can be used to detect its rapidity effectively. According to the points obtained by the scanner, the surface fitting method based on B-spline interpolation and the SG bar initial support value processing method are used to optimize the tunnel surface to obtain the initial degree calculation reference. Based on the method, a calculation system for the initial flatness of the tunnel based on 3DLS technology is established. At the same time, the calculation method of the overall field of view distance and the development of small blocks is proposed. Through its application and comparison with traditional methods, the analysis shows that the three-dimensional laser scanning technology is feasible in the detection of the initial branch of the tunnel, and achieves a high degree of accuracy requirements.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes

2. Feasibility Study of Tractor-Test Vehicle Technique for Practical Structural Condition Assessment of Beam-Like Bridge Deck

3. Damage detection of structures with parametric uncertainties based on fusion of statistical moments

4. Bridge damage identification method considering road surface roughness by using indirect measurement technique;Yang;China J. Highw. Transp.,2019

5. Research on new damage detection method of frame structures based on generalized pattern search algorithm;Yang;China J. Sci. Instrum.,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3