Abstract
The existing safety analysis methods for the assessment of the aerostatic stability of long-span symmetry cable-stayed bridges have difficulties in meeting the requirements of engineering applications. Based on the finite element method and the inverse reliability theory, an approach for the probabilistic safety analysis of the aerostatic instability of long-span symmetry cable-stayed bridges is proposed here. The probabilistic safety factor of aerostatic instability of long-span symmetry cable-stayed bridges was estimated using the proposed method, with Sutong Bridge as an example. The probabilistic safety factors for the aerostatic instability of Sutong Bridge were calculated using the finite element inverse reliability method, based on the FORM approach. The influences of the mean value and the coefficient of variation of random variables, as well as the iterative step length of finite difference, on the probabilistic safety factors of aerostatic instability of Sutong Bridge were analyzed. The results indicated that it is necessary to consider the uncertainties of random variables in probabilistic safety factor assessments of aerostatic instability in cable-stayed bridges using the proposed method, which could be recommended for the assessment of safety factors involved in the aerostatic instability of long-span symmetry cable-stayed bridges. The randomness of the parameters had an important influence on the probabilistic safety factor of the aerostatic stability of Sutong Bridge. Neglecting the randomness of these parameters may result in instability of the structure.
Funder
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献