Author:
Dong Ting,Chen Xinhua,Zhang Jun
Abstract
Bistable energy harvesters have been extensively studied. However, theoretical research on the dynamics of bistable energy harvesters based on asymmetric bistable composite laminated plate and shell structures has not been conducted. In this paper, a theoretical model on the dynamics of an energy harvester based on an asymmetric bistable composite laminated shell is established. The dynamic snap-through, the nonlinear vibrations and the voltage output with two potential wells of the bistable energy harvester are studied. The influence of the amplitude and the frequency for the base excitation on the bistable energy harvester is studied. When the frequency for the base excitation with a suitable amplitude in the frequency sweeping is located in a specific range or the amplitude for the base excitation with a suitable frequency in the amplitude sweeping is located in a specific range, the large-amplitude dynamic snap-through, nonlinear vibrations and voltage output with two potential wells can be found to occur. The amplitude and the frequency for the base excitation interact on each other for the specific amplitude or frequency range which migrates due to the softening nonlinearity. The vibration in the process of the dynamic snap-through behaves as the chaotic vibration. The nonlinear vibrations of the bistable system behave as the periodic vibration, the quasi-periodic vibration and the chaotic vibration. This study provides a theoretical reference for the design of energy harvesters based on asymmetric bistable composite laminated plate and shell structures.
Funder
Natural Science Foundation of Beijing Municipality
the Excellent Researcher Award Program from Ministry of Beijing
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献