Maze Solving by a Quantum Walk with Sinks and Self-Loops: Numerical Analysis

Author:

Matsuoka LeoORCID,Yuki Kenta,Lavička HynekORCID,Segawa EtsuoORCID

Abstract

Maze-solving by natural phenomena is a symbolic result of the autonomous optimization induced by a natural system. We present a method for finding the shortest path on a maze consisting of a bipartite graph using a discrete-time quantum walk, which is a toy model of many kinds of quantum systems. By evolving the amplitude distribution according to the quantum walk on a kind of network with sinks, which is the exit of the amplitude, the amplitude distribution remains eternally on the paths between two self-loops indicating the start and the goal of the maze. We performed a numerical analysis of some simple cases and found that the shortest paths were detected by the chain of the maximum trapped densities in most cases of bipartite graphs. The counterintuitive dependence of the convergence steps on the size of the structure of the network was observed in some cases, implying that the asymmetry of the network accelerates or decelerates the convergence process. The relation between the amplitude remaining and distance of the path is also discussed briefly.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Walk on FRET Networks;Photonic Neural Networks with Spatiotemporal Dynamics;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3