Modulation Recognition of Communication Signal Based on Convolutional Neural Network

Author:

Jiang Kaiyuan,Qin Xvan,Zhang Jiawei,Wang AiliORCID

Abstract

In the noncooperation communication scenario, digital signal modulation recognition will help people to identify the communication targets and have better management over them. To solve problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithms, a kind of communication signal modulation recognition model based on convolution neural network (CNN) is proposed. In this paper, a convolution neural network combines bidirectional long short-term memory (BiLSTM) with a symmetrical structure to successively extract the frequency domain features and timing features of signals and then assigns importance weights based on the attention mechanism to complete the recognition task. Seven typical digital modulation schemes including 2ASK, 4ASK, 4FSK, BPSK, QPSK, 8PSK and 64QAM are used in the simulation test, and the results show that, compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR, which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3