Key Concepts of Systemological Approach to CPS Adaptive Information Security Monitoring

Author:

Poltavtseva Maria,Shelupanov Alexander,Bragin DmitriyORCID,Zegzhda Dmitry,Alexandrova Elena

Abstract

Modern cyber-physical systems (CPS) use digital control of physical processes. This allows attackers to conduct various cyberattacks on these systems. According to the current trends, an information security monitoring system (ISMS) becomes part of a security management system of CPS. It provides information to make a decision and generate a response. A large number of new methods are aimed at CPS security, including security assessment, intrusion detection, and ensuring sustainability. However, as a cyber-physical system operates over time, its structure and requirements may change. The datasets available for the protection object (CPS) and the security requirements have become dynamic. This dynamic effect causes asymmetry between the monitoring data collection and processing subsystem and the presented security tasks. The problem herein is the choice of the most appropriate set of methods in order to solve the security problems of a particular CPS configuration from a particular bank of the available methods. To solve this problem, the authors present a method for the management of an adaptive information security monitoring system. The method consists of solving a multicriteria discrete optimization problem under Pareto-optimality conditions when the available data, methods or external requirements change. The experimental study was performed on an example of smart home intrusion detection. In the study, the introduction of a constraint (a change in requirements) led to the revision of the monitoring scheme and a different recommendation of the monitoring method. As a result, the information security monitoring system gains the property of adaptability to changes in tasks and the available data. An important result from the study is the fact that the monitoring scheme obtained using the proposed management method has a proven optimality under the given conditions. Therefore, the asymmetry between the information security monitoring data collection and processing subsystem and the set of security requirements in cyber-physical systems can be overcome.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensuring the Big Data Traceability in Heterogeneous Data Systems;2023 International Russian Automation Conference (RusAutoCon);2023-09-10

2. Adaptive Monitoring of Companies' Information Security;International Journal of Electronics and Telecommunications;2023-07-26

3. Cybersecurity in Cyber–Physical Power Systems;Energies;2023-06-07

4. Towards Increasing Safety in Collaborative CPS Environments;Database and Expert Systems Applications - DEXA 2023 Workshops;2023

5. Trust Monitoring in a Cyber-Physical System for Security Analysis Based on Distributed Computing;Current Problems in Applied Mathematics and Computer Science and Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3