Abstract
A new, flexible claim-size Chen density is derived for modeling asymmetric data (negative and positive) with different types of kurtosis (leptokurtic, mesokurtic and platykurtic). The new function is used for modeling bimodal asymmetric medical data, water resource bimodal asymmetric data and asymmetric negatively skewed insurance-claims payment triangle data. The new density accommodates the “symmetric”, “unimodal right skewed”, “unimodal left skewed”, “bimodal right skewed” and “bimodal left skewed” densities. The new hazard function can be “decreasing–constant–increasing (bathtub)”, “monotonically increasing”, “upside down constant–increasing”, “monotonically decreasing”, “J shape” and “upside down”. Four risk indicators are analyzed under insurance-claims payment triangle data using the proposed distribution. Since the insurance-claims data are a quarterly time series, we analyzed them using the autoregressive regression model AR(1). Future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about big losses that may be produced from future claims.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献