Author:
Zhou Xiaoshuang,Gao Xiulian,Zhang Yukun,Yin Xiuling,Shen Yanfeng
Abstract
In this article, we focus on the efficient estimators of the derivative of the nonparametric function in the nonparametric quantile regression model. We develop two ways of combining quantile regression information to derive the estimators. One is the weighted composite quantile regression estimator based on the quantile weighted loss function; the other is the weighted quantile average estimator based on the weighted average of quantile regression estimators at a single quantile. Furthermore, by minimizing the asymptotic variance, the optimal weight vector is computed, and consequently, the optimal estimator is obtained. Furthermore, we conduct some simulations to evaluate the performance of our proposed estimators under different symmetric error distributions. Simulation studies further illustrate that both estimators work better than the local linear least square estimator for all the symmetric errors considered except the normal error, and the weighted quantile average estimator performs better than the weighted composite quantile regression estimator in most situations.
Funder
the Ministry of Education Humanities and Social Sciences Research Youth Foundation
Natural Science Foundation of Shandong Province
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献