Classification of Elastic Wave for Non-Destructive Inspections Based on Self-Organizing Map

Author:

Nakamura Katsuya1ORCID,Kobayashi Yoshikazu1,Oda Kenichi1,Shigemura Satoshi1

Affiliation:

1. Department of Civil Engineering, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

Abstract

An arrival time of an elastic wave is the important parameter to visualize the locations of the failures and/or elastic wave velocity distributions in the field of non-destructive testing (NDT). The arrival time detection is conducted generally using automatic picking algorithms in a measured time-history waveform. According to automatic picking algorithms, it is expected that the detected arrival time from low S/N signals has low accuracy if low S/N signals are measured in elastic wave measurements. Thus, in order to accurately detect the arrival time for NDT, the classification of measured elastic waves is required. However, the classification of elastic waves based on algorithms has not been extensively conducted. In this study, a classification method based on self-organizing maps (SOMs) is applied to classify the measured waves. SOMs visualize relation of measured data wherein the number of classes is unknown. Therefore, using SOM selects high and low S/N signals adequately from the measured waves. SOM is validated on model tests using the pencil lead breaks (PLBs), and it was confirmed that SOM successfully visualize the classes consisted of high S/N signal. Moreover, classified high S/N signals were applied to the source localization and it was noteworthy that localized sources were more accurate in comparison with using all of the measured waves.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3