Machine Learning-Based Flexural Capacity Prediction of Corroded RC Beams with an Efficient and User-Friendly Tool

Author:

Abushanab Abdelrahman1ORCID,Wakjira Tadesse Gemeda2ORCID,Alnahhal Wael1ORCID

Affiliation:

1. Department of Civil and Architectural Engineering, Qatar University, Doha 2713, Qatar

2. School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada

Abstract

Steel corrosion poses a serious threat to the structural performance of reinforced concrete (RC) structures. Thus, this study evaluates the flexural capacity of RC beams through machine learning (ML)-based techniques with six parameters used as input features: beam width, beam effective depth, concrete compressive strength, reinforcement ratio, reinforcement yield strength, and corrosion level. Four single and ensemble ML models are evaluated; namely, decision tree, support vector machine, adaptive boosting, and gradient boosting. Hyperparameters of each model were optimized using grid search and K-fold cross-validation with root mean squared error used as the performance index. The predictive performance of each model was assessed using four statistical performance metrics. The analysis results demonstrated that the decision tree model exhibited overfitting and limited generalization ability. The adaptive boosting model also had a slight overfitting issue. In addition, the support vector machine reported comparable accuracy to that of adaptive boosting. Conversely, the proposed gradient boosting ensemble model achieved the best performance with strong generalization ability, as indicated by its lowest mean absolute error of 2.78 kN.m, mean absolute percent error of 13.40%, and root mean squared error of 3.56 kN.m, and the highest coefficient of determination of 97.30% on the test dataset. The optimized gradient boosting model has been deployed into a graphical user interface, allowing for practical implementation of the model and enabling fast, efficient, and intelligent prediction of the flexural capacity of corroded RC beams.

Funder

Qatar Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3