Dietary Methionine Restriction Alleviates Choline-Induced Tri-Methylamine-N-Oxide (TMAO) Elevation by Manipulating Gut Microbiota in Mice

Author:

Lu Manman,Yang YuhuiORCID,Xu Yuncong,Wang Xiaoyue,Li Bo,Le Guowei,Xie Yanli

Abstract

Dietary methionine restriction (MR) has been shown to decrease plasma trimethylamine-N-oxide (TMAO) levels in high-fat diet mice; however, the specific mechanism used is unknown. We speculated that the underlying mechanism is related with the gut microbiota, and this study aimed to confirm the hypothesis. In this study, we initially carried out an in vitro fermentation experiment and found that MR could reduce the ability of gut microbiota found in the contents of healthy mice and the feces of healthy humans to produce trimethylamine (TMA). Subsequently, mice were fed a normal diet (CON, 0.20% choline + 0.86% methionine), high-choline diet (H-CHO, 1.20% choline + 0.86% methionine), or high-choline + methionine-restricted diet (H-CHO+MR, 1.20% choline + 0.17% methionine) for 3 months. Our results revealed that MR decreased plasma TMA and TMAO levels in H-CHO-diet-fed mice without changing hepatic FMO3 gene expression and enzyme activity, significantly decreased TMA levels and expression of choline TMA-lyase (CutC) and its activator CutD, and decreased CutC activity in the intestine. Moreover, MR significantly decreased the abundance of TMA-producing bacteria, including Escherichia-Shigella (Proteobacteria phylum) and Anaerococcus (Firmicutes phylum), and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria and SCFA levels. Furthermore, both MR and sodium butyrate supplementation significantly inhibited bacterial growth, down-regulated CutC gene expression levels in TMA-producing bacteria, including Escherichia fergusonii ATCC 35469 and Anaerococcus hydrogenalis DSM 7454 and decreased TMA production from bacterial growth under in vitro anaerobic fermentation conditions. In conclusion, dietary MR alleviates choline-induced TMAO elevation by manipulating gut microbiota in mice and may be a promising approach to reducing circulating TMAO levels and TMAO-induced atherosclerosis.

Funder

Key Scientific Research Project in Universities of Henan Province

Henan Provincial Science and Technology Research Plan Joint fund

National Engineering Laboratory/Provincal Key Laboratory of food Science Discipline in Henan University of Technology

Science Foundation of Henan University of Technology

Zhengzhou Key Science and Technology Innovation Project

Innovative Funds Plan of Henan University of Technology

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference91 articles.

1. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease;Zeisel;Annu. Rev. Nutr.,2017

2. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems;Jameson;Microb. Genom.,2016

3. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation;Bennett;Cell Metab.,2013

4. Concentrations of choline-containing compounds and betaine in common foods;Zeisel;J. Nutr.,2003

5. Endocrine organs of cardiovascular diseases: Gut microbiota;Jia;J. Cell. Mol. Med.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3