A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models

Author:

E Silva Jefferson D. S.1ORCID,Ribeiro Jéssica A. P.1ORCID,Adanvo Vignon F.1ORCID,Mafra Samuel B.1ORCID,Mendes Luciano L.1ORCID,Li Yonghui2ORCID,de Souza Rausley A. A.12ORCID

Affiliation:

1. National Institute of Telecommunications (INATEL), Santa Rita do Sapucaí 37540-000, Brazil

2. School of Electrical and Information Engineering, University of Sydney, Sydney, NSW 2006, Australia

Abstract

Terahertz (THz) band will play an important role in enabling sixth generation (6G) envisioned applications. Compared with lower frequency signals, THz waves are severely attenuated by the atmosphere temperature, pressure, and humidity. Thus, designing a THz communication system must take into account how to circumvent or diminish those issues to achieve a sufficient quality of service. Different solutions are being analyzed: intelligent communication environments, ubiquitous artificial intelligence, extensive network automation, and dynamic spectrum access, among others. This survey focuses on the benefits of integrating intelligent surfaces (ISs) and THz communication systems by providing an overview of IS in wireless communications with the scanning of the recent developments, a description of the architecture, and an explanation of the operation. The survey also covers THz channel models, differentiating them based on deterministic and statistical channel modeling. The IS-aided THz channels are elucidated at the end of the survey. Finally, discussions and research directions are given to help enrich the IS field of research and guide the reader through open issues.

Funder

CNPq

São Paulo Research Foundation

MCTIC

Advanced Academic Education in Telecommunications Networks and Systems

EU funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3