An Improved Q-Learning Algorithm for Optimizing Sustainable Remanufacturing Systems

Author:

Qin Shujin1ORCID,Zhang Xiaofei2,Wang Jiacun3ORCID,Guo Xiwang2,Qi Liang4ORCID,Cao Jinrui5,Liu Yizhi2

Affiliation:

1. College of Economics and Management, Shangqiu Normal University, Shangqiu 476000, China

2. College of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China

3. Department of Computer Science and Software Engineering, Monmouth University, West Long Branch, NJ 07764, USA

4. Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

5. Computer Science Department, New Jersey City University, Jersey City, NJ 07102, USA

Abstract

In our modern society, there has been a noticeable increase in pollution due to the trend of post-use handling of items. This necessitates the adoption of recycling and remanufacturing processes, advocating for sustainable resource management. This paper aims to address the issue of disassembly line balancing. Existing disassembly methods largely rely on manual labor, raising concerns regarding safety and sustainability. This paper proposes a human–machine collaborative disassembly approach to enhance safety and optimize resource utilization, aligning with sustainable development goals. A mixed-integer programming model is established, considering various disassembly techniques for hazardous and delicate parts, with the objective of minimizing the total disassembly time. The CPLEX solver is employed to enhance model accuracy. An improvement is made to the Q-learning algorithm in reinforcement learning to tackle the bilateral disassembly line balancing problem in human–machine collaboration. This approach outperforms CPLEX in both solution efficiency and quality, especially for large-scale problems. A comparative analysis with the original Q-learning algorithm and SARSA algorithm validates the superiority of the proposed algorithm in terms of convergence speed and solution quality.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3