Data-Driven Predictive Analysis and Sustainable Management of Concrete Waste in Pakistan

Author:

Chen Yuan1,Asim Minhas1ORCID

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450000, China

Abstract

The construction sector of Pakistan is on a cross-growth trajectory, developing under the twin pressures of emerging infrastructure-based demands and sustainable practices that need to be inculcated urgently. This article focuses on the critical evaluation of sustainable waste management practices within the fast-developing construction industry of Pakistan, and clearly delineates a research gap in the current methodologies and use of data combined with the absence of a strategy for effective management of concrete waste. This research aims to utilize an algorithm based on machine learning that will provide accurate prediction in the generation of construction waste by harnessing the potential of real-time data for improved sustainability in the construction process. This research has identified fundamental factors leading systematically to the generation of concrete waste by creating an extensive dataset from construction firms all over Pakistan. This research study also identifies the potential concrete causes and proposed strategies towards the minimization of waste with a strong focus on the reuse and recycling of the same concrete material to enhance the adoption of sustainable practices. The prediction of the model indicates that the volumes of construction are to increase to 158 cubic meters by 2030 and 192 cubic meters by 2040. Further, it projects the increase in concrete construction waste volumes to 223 cubic meters by the year 2050 through historical wastage patterns.

Publisher

MDPI AG

Reference30 articles.

1. Assessment of critical risk and success factors in construction supply chain: A case of Pakistan;Abas;Int. J. Constr. Manag.,2022

2. Risk assessment of circular economy practices in construction industry of Pakistan;Hassan;Sci. Total. Environ.,2023

3. Circular economy and its implementation in cement industry: A case point in Pakistan;Uddin;Sci. Total. Environ.,2023

4. Quantification and benchmarking of construction waste and its impact on cost—A case of Pakistan;Shahid;Eng. Constr. Archit. Manag.,2023

5. Lightweight concrete from a perspective of sustainable reuse of waste byproducts;Junaid;Constr. Build. Mater.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3