The Structural Design of and Experimental Research on a Coke Oven Gas Burner

Author:

Geng Mingrui1,Jin Suyi1,Wang Denghui1ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

A novel low-NOx burner was proposed in this study to achieve the stable and clean combustion of low- and medium-calorific-value gas and promote energy sustainability, and the influence of the gas pipe structure on the burner’s characteristics was studied with coke oven gas as a fuel. A 40 kW burner test bench was established to conduct cold-state experiments to investigate the influences of the gas pipe structure on the aerodynamic characteristics of the burner. We performed numerical simulations on both a 40 kW burner and a 14 MW prototype burner to investigate the thermal performance of the burners and their impact on low NOx emissions. The experimental results showed that increasing the deflection angle of the gas pipe nozzle direction relative to the circumferential tangent direction, the high-velocity zone and the high-concentration zone of the flow field move towards the central axis. Increasing the bending angle of gas pipe nozzle direction relative to the axis direction caused the high-velocity zone and the high-concentration zone to move upstream direction of the jet. The simulation reveals that the NO concentration at the exit cross-section of the combustion chamber of the 14 MW prototype burner is 17.00 mg/m3 (with 3.5% oxygen content). A recommended design structure of the burner was proposed, with a deflection angle of 0°and a bending angle of 0° for the No. 3 gas pipe, and a deflection angle of 15° and a bending angle of 30° for the No. 4 gas pipe.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3