Eco-Friendly Smart Car Parking Management System with Enhanced Sustainability

Author:

Sakib Nazmus1ORCID,Bakibillah A. S. M.2ORCID,Susilawati Susilawati3ORCID,Kamal Md Abdus Samad1ORCID,Yamada Kou1

Affiliation:

1. Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan

2. Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

3. School of Engineering, Monash University, Bandar Sunway, Subang Jaya 47500, Malaysia

Abstract

Efficient car parking management systems that minimize environmental impacts while maximizing user comfort are highly demanding for a future sustainable society. Using electric or gasoline vehicle-type information, emerging computation and communication technologies open the opportunity to provide practical solutions to achieve such goals. This paper proposes an eco-friendly smart parking management system that optimally allocates the incoming vehicles to reduce overall emissions in closed parking facilities while providing comfort incentives to the users of electric vehicles (EVs). Specifically, upon arrival of a car, the most suitable parking spot is determined by minimizing an adaptive objective function that indirectly reflects anticipatory operation for the overall performance maximization of the parking facility using electric or gasoline vehicle-type information. The adaptive objective function includes a trade-off factor that tunes driving and walking distances, relating emissions and comfort to treat incoming vehicles appropriately. The proposed system is simulated for managing a model car parking facility in a shopping complex in Japan, and the aspects related to fuel consumption, CO2 emissions, and user comfort are evaluated and benchmarked with other standard parking management systems. The proposed system reduces CO2 emissions and fuel consumption and improves parking efficiency compared to the current parking management systems, while also prioritizing user comfort.

Funder

Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3