Multimodal Framework for Smart Building Occupancy Detection

Author:

Abuhussain Mohammed Awad1,Alotaibi Badr Saad1ORCID,Dodo Yakubu Aminu1ORCID,Maghrabi Ammar2,Aliero Muhammad Saidu3

Affiliation:

1. Architectural Engineering Department, College of Engineering, Najran University, Najran 66426, Saudi Arabia

2. Urban and Engineering Research Department, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 24236, Saudi Arabia

3. Department of Information Technology, Kebbi State University Science and Technology, Aliero 863104, Nigeria

Abstract

Over the years, building appliances have become the major energy consumers to improve indoor air quality and occupants’ lifestyles. The primary energy usage in building sectors, particularly lighting, Heating, Ventilation, and Air conditioning (HVAC) equipment, is expected to double in the upcoming years due to inappropriate control operation activities. Recently, several researchers have provided an automated solution to turn HVAC and lighting on when the space is being occupied and off when the space becomes vacant. Previous studies indicate a lack of publicly accessible datasets for environmental sensing and suggest developing holistic models that detect buildings’ occupancy. Additionally, the reliability of their solutions tends to decrease as the occupancy grows in a building. Therefore, this study proposed a machine learning-based framework for smart building occupancy detection that considered the lighting parameter in addition to the HVAC parameter used in the existing studies. We employed a parametric classifier to ensure a strong correlation between the predicting parameters and the occupancy prediction model. This study uses a machine learning model that combines direct and environmental sensing techniques to obtain high-quality training data. The analysis of the experimental results shows high accuracy, precision, recall, and F1-score of the applied RF model (0.86, 0.99, 1.0, and 0.88 respectively) for occupancy prediction and substantial energy saving.

Funder

Deanship of Scientific Research at Najran University for funding this work under the Distinguished Research Funding program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3