Analysis and Reflection on the Green, Low-Carbon, and Energy-Saving Design of the Super High-Rise Building

Author:

Li Yangluxi1,Chen Huishu2ORCID,Yu Peijun3,Yang Li4ORCID

Affiliation:

1. Welsh School of Architecture, Cardiff University, Cardiff CF10 3NB, UK

2. School of Architecture & Urban Planning, Shenzhen University, Shenzhen 518060, China

3. School of Materials Science and Engineering, Hainan University, Haikou 570228, China

4. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

Abstract

Shanghai Tower has become a new landmark of Shanghai. In the current trend advocating green building and energy efficiency, considerations of wind loads and thermal characteristics of the perimeter structure of Shanghai Tower are crucial. This paper conducts comparative simulation studies on the wind environment of Shanghai Tower using Ecotect software, and stress analyses and thermal simulations of the perimeter structure using ANSYS software. The study compared three buildings’ surface wind pressure distributions using models with equal-volume and circular cross-sections. We found that the unique exterior design of the Shanghai Tower results in a more regular and uniform distribution of wind pressure on its surface compared to both circular and square planar models, with a lower average wind pressure value. In addition, the stress analysis results indicate significant differences in deformation and stress distribution between the windward and leeward sides. Enhancing the bending moment detection of the peripheral structure and optimizing the layout of detection points are recommended. Thermal simulation results show excessive heat conduction flux in winter conditions, suggesting optimization using passive energy-saving methods such as light-sensitive thermal insulation materials during winter. This research is a reference for designing other super-tall buildings prioritizing low-carbon energy efficiency and structural safety.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3