Analysis of Environmental Impact and Mechanical Properties of Inconel 625 Produced Using Wire Arc Additive Manufacturing

Author:

Sword J. Iain1ORCID,Galloway Alexander1ORCID,Toumpis Athanasios1ORCID

Affiliation:

1. Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK

Abstract

Inconel 625 is a nickel-based superalloy widely used in industries such as energy, space, and defence, due to its strength and corrosion resistance. It is traditionally time- and resource-intensive to machine, leading to increased environmental impact and material waste. Using additive manufacturing (AM) technology enables a reduction in resource consumption during the manufacture of high value components, as material is only deposited where it is required. This study compares the environmental impact of manufacturing an Inconel 625 impeller through machining and wire arc additive manufacturing (WAAM) by employing established life cycle assessment methods. WAAM shows significant advantages, cutting energy consumption threefold and reducing material waste from 85% to 35%. The current work also evaluates the mechanical properties of WAAM-produced components through tensile and axial fatigue testing, in addition to the use of optical and electron microscopy for metallurgical analysis and fractography. This demonstrates yield and ultimate tensile strengths exceeding industrial standards, with comparable or superior fatigue life to other AM methods. The improved fatigue performance extends the service life of components, bolstering sustainability by reducing the need for frequent replacements, thereby lessening associated environmental impacts. These findings underscore the promise of WAAM in enhancing both environmental sustainability and mechanical performance in manufacturing Inconel 625 components.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3