Transcriptomic Profiling of Mouse Mast Cells upon Pathogenic Avian H5N1 and Pandemic H1N1 Influenza a Virus Infection

Author:

Tang Yuling,Wu Hongping,Huo Caiyun,Zou Shumei,Hu Yanxin,Yang HanchunORCID

Abstract

Mast cells, widely residing in connective tissues and on mucosal surfaces, play significant roles in battling against influenza A viruses. To gain further insights into the host cellular responses of mouse mast cells with influenza A virus infection, such as the highly pathogenic avian influenza A virus H5N1 and the human pandemic influenza A H1N1, we employed high-throughput RNA sequencing to identify differentially expressed genes (DEGs) and related signaling pathways. Our data revealed that H1N1-infected mouse mast P815 cells presented more up- and down-regulated genes compared with H5N1-infected cells. Gene ontology analysis showed that the up-regulated genes in H1N1 infection were enriched for more degranulation-related cellular component terms and immune recognition-related molecular functions terms, while the up-regulated genes in H5N1 infection were enriched for more immune-response-related biological processes. Network enrichment of the KEGG pathway analysis showed that DEGs in H1N1 infection were specifically enriched for the FoxO and autophagy pathways. In contrast, DEGs in H5N1 infection were specifically enriched for the NF-κB and necroptosis pathways. Interestingly, we found that Nbeal2 could be preferentially activated in H5N1-infected P815 cells, where the level of Nbeal2 increased dramatically but decreased in HIN1-infected P815 cells. Nbeal2 knockdown facilitated inflammatory cytokine release in both H1N1- and H5N1-infected P815 cells and aggravated the apoptosis of pulmonary epithelial cells. In summary, our data described a transcriptomic profile and bioinformatic characterization of H1N-1 or H5N1-infected mast cells and, for the first time, established the crucial role of Nbeal2 during influenza A virus infection.

Funder

the National Natural Science Found

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3