Different Environmental and Phylogenetic Controls over the Altitudinal Variation in Leaf N and P Resorption Traits between Woody and Herbaceous Plants

Author:

Chen Haoxuan,Chen Shuang,Wang Xiaochun,Liu XinruiORCID,Wang Xue,Zhu Rong,Mo Weiyi,Wang Ruili,Zhang Shuoxin

Abstract

Leaf nutrient resorption traits are regarded as important indicators reflecting the strategy of plant nutrient conservation, yet the mechanism underlying the variation of resorption traits in different plant growth forms (PGFs) remains unclear. In order to untangle the phylogenetic and environmental influences on leaf nitrogen (N) and phosphorus (P) resorption traits between woody and herbaceous plants, we investigated N and P contents of green and senesced leaves in 53 species along an altitudinal gradient (1374–3649 m) in the Taibai Mountain of central China and estimated leaf N and P resorption efficiency and proficiency. Our results show that leaf N and P resorption efficiency (NRE and PRE) had significant positive trends with altitude in both woody and herbaceous plants (all p < 0.05); however, their altitudinal patterns of N and P resorption proficiency (NRP and PRP) were different. For woody plants, leaf NRP and NRE:PRE first decreased and then increased with altitude (p < 0.05), while NRP:PRP had the opposite trend (p < 0.05). In herbaceous plants, leaf NRP and PRP decreased but NRP:PRP increased with altitude (p < 0.05). Climatic factors exerted the major influences on the variation in leaf NRE and PRE (18.5–24.8% explained variation). However, phylogenetic taxonomy mainly affected the variation of leaf PRP and NRP:PRP (45.2% and 41.4% explained variation) in all species, NRP:PRP in woody plants (37.8% explained variation), and NRE:PRE in herbaceous plants (49.7% explained variation). In addition, leaf NRP:PRP showed a significant phylogenetic signal (Blomberg’s p < 0.05). These results highlight the importance of taking PGFs and phylogenetic information into consideration when examining the interspecies variation in leaf resorption under environmental changes, which can advance our knowledge of plant nutrient utilization strategies in response to fluctuating environments and lay the groundwork for the development of complex element biogeochemical models.

Funder

National Natural Science Foundation of China

Youth Talent Support Project of Science and Technology Association in Shaanxi Province

Ministry of Science and Technology of China

Ministry of Education of China

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3