Identifying Collapsed Buildings Using Post-Earthquake Satellite Imagery and Convolutional Neural Networks: A Case Study of the 2010 Haiti Earthquake

Author:

Ji Min,Liu Lanfa,Buchroithner ManfredORCID

Abstract

Earthquake is one of the most devastating natural disasters that threaten human life. It is vital to retrieve the building damage status for planning rescue and reconstruction after an earthquake. In cases when the number of completely collapsed buildings is far less than intact or less-affected buildings (e.g., the 2010 Haiti earthquake), it is difficult for the classifier to learn the minority class samples, due to the imbalance learning problem. In this study, the convolutional neural network (CNN) was utilized to identify collapsed buildings from post-event satellite imagery with the proposed workflow. Producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and Kappa were used as evaluation metrics. To overcome the imbalance problem, random over-sampling, random under-sampling, and cost-sensitive methods were tested on selected test A and test B regions. The results demonstrated that the building collapsed information can be retrieved by using post-event imagery. SqueezeNet performed well in classifying collapsed and non-collapsed buildings, and achieved an average OA of 78.6% for the two test regions. After balancing steps, the average Kappa value was improved from 41.6% to 44.8% with the cost-sensitive approach. Moreover, the cost-sensitive method showed a better performance on discriminating collapsed buildings, with a PA value of 51.2% for test A and 61.1% for test B. Therefore, a suitable balancing method should be considered when facing imbalance dataset to retrieve the distribution of collapsed buildings.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3