Abstract
Agricultural policies should be aimed at enhancing production per unit area and help to reduce the cultivated area. To that end, it is critical to conserve soil fertility, promote ecological agriculture, employ climate change adaptation technology, significantly enhance irrigated agriculture, and decrease agricultural production risks. Sustainable agricultural production requires optimized land usage, increased energy efficiency, reduced use of fossil fuels, and minimized environmental consequences. Energy has been used in agriculture in a dramatically increased manner, and the agri-food chain now accounts for 30% of the total global energy use. Energy analysis quantifies the amount of energy used in agricultural production, so it may be used to optimize energy consumption and boost energy efficiency, further propelling the sustainable development of agriculture. Recently, the Mongolian government has expressed concerns about how to realize food sustainability and self-sufficiency in wheat production and agriculture, while also maintaining environmental sustainability. However, there is a substantial study gap between agriculture and energy analysis in Mongolia. This study investigated energy consumption and the effects of energy inputs and energy types on the agricultural production of Mongolia from 2005 to 2018. The output was calculated based on the annual wheat equivalent for the 14 major provinces as a whole. The output level is given as a function of human labor, machinery, electricity, diesel fuel, fertilizers, pesticides, irrigation water, and seed energy, and the yield and different energy inputs are determined using the ordinary least squares of the Cobb–Douglas function. Total energy input grew from 2359.50 MJ ha−1 in 2005 to 3047.61 MJ ha−1 in 2018, while total output energy increased from 2312.08 MJ ha−1 to 4562.56 MJ ha−1. During this period, the energy use efficiency (input–output ratio), energy productivity, and net energy of wheat production were studied. The fertilizer inputs were statistically significant. The contribution of nitrogen, diesel, and irrigation water towards the production level was 3.52, 3.09, and 2.33, respectively. As a result, the data indicated that non-renewable, direct, and indirect energy sources all had a positive impact on the output level. Furthermore, non-renewable energy in Mongolian agriculture has been used in a significantly increased manner.
Funder
Agricultural Science and Technology Innovation Project" of Chinese Academy of Agricultural Sciences
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference40 articles.
1. The Water-Energy-Food Nexus—A New Approach in Support of Food Security and Sustainable Agriculture,2014
2. Sustainable Agriculture: Fad or Harbinger?
3. Alterations in Food Production;Knorr,1984
4. Where do we stand on sustainable agriculture?;Bidwell;J. Soil Water Conserv.,1986
5. Agricultural sustainability: An overview and research assessment;Carter;Calif. Agric.,1989