Energy Analysis on Wheat Yield of Mongolian Agriculture

Author:

Bayasgalankhuu Lyankhua,Ilahi SaraORCID,Wei Wenshan,Wu YongchangORCID

Abstract

Agricultural policies should be aimed at enhancing production per unit area and help to reduce the cultivated area. To that end, it is critical to conserve soil fertility, promote ecological agriculture, employ climate change adaptation technology, significantly enhance irrigated agriculture, and decrease agricultural production risks. Sustainable agricultural production requires optimized land usage, increased energy efficiency, reduced use of fossil fuels, and minimized environmental consequences. Energy has been used in agriculture in a dramatically increased manner, and the agri-food chain now accounts for 30% of the total global energy use. Energy analysis quantifies the amount of energy used in agricultural production, so it may be used to optimize energy consumption and boost energy efficiency, further propelling the sustainable development of agriculture. Recently, the Mongolian government has expressed concerns about how to realize food sustainability and self-sufficiency in wheat production and agriculture, while also maintaining environmental sustainability. However, there is a substantial study gap between agriculture and energy analysis in Mongolia. This study investigated energy consumption and the effects of energy inputs and energy types on the agricultural production of Mongolia from 2005 to 2018. The output was calculated based on the annual wheat equivalent for the 14 major provinces as a whole. The output level is given as a function of human labor, machinery, electricity, diesel fuel, fertilizers, pesticides, irrigation water, and seed energy, and the yield and different energy inputs are determined using the ordinary least squares of the Cobb–Douglas function. Total energy input grew from 2359.50 MJ ha−1 in 2005 to 3047.61 MJ ha−1 in 2018, while total output energy increased from 2312.08 MJ ha−1 to 4562.56 MJ ha−1. During this period, the energy use efficiency (input–output ratio), energy productivity, and net energy of wheat production were studied. The fertilizer inputs were statistically significant. The contribution of nitrogen, diesel, and irrigation water towards the production level was 3.52, 3.09, and 2.33, respectively. As a result, the data indicated that non-renewable, direct, and indirect energy sources all had a positive impact on the output level. Furthermore, non-renewable energy in Mongolian agriculture has been used in a significantly increased manner.

Funder

Agricultural Science and Technology Innovation Project" of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. The Water-Energy-Food Nexus—A New Approach in Support of Food Security and Sustainable Agriculture,2014

2. Sustainable Agriculture: Fad or Harbinger?

3. Alterations in Food Production;Knorr,1984

4. Where do we stand on sustainable agriculture?;Bidwell;J. Soil Water Conserv.,1986

5. Agricultural sustainability: An overview and research assessment;Carter;Calif. Agric.,1989

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3