Planning Method and Principles of the Cloud Energy Storage Applied in the Power Grid Based on Charging and Discharging Load Model for Distributed Energy Storage Devices

Author:

Li Junfang,Xing Yue,Zhang Donghui

Abstract

The cloud energy storage system (CES) is a shared distributed energy storage resource. The random disordered charging and discharging of large-scale distributed energy storage equipment has a great impact on the power grid. This paper solves two problems. On one hand, to present detailed plans for designing an orderly controlled CES system in a realistic power system. On the other hand, Monte Carlo simulation (MCS) is used for analyzing the load curves of five types of distributed energy storage systems to manage and operate the CES system. A method of its planning and the principles of CES for applied in a power grid, are presented by analyzing the impact based on five load curves including the electric vehicle (EV), the ice storage system, the demand response, the heat storage system, and the decentralized electrochemical energy storage system. The MCS simulates the random charging and discharging of the system over a five-year planned scaling of distributed energy storage from 2021 through 2025. The influence of distributed energy storage systems on power grid capacity, load characteristics, and safety margins is researched to summarize the applicable fields of CES in supporting large power grids. Finally, important conclusions are summarized and other research possibilities in this field are presented. This paper represents a significant reference for planners.

Funder

China Southern Power Grid Company Limited

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference51 articles.

1. Cloud energy storage for residential and small commercial consumers: A business case study

2. Research framework and basic models for cloud energy storage in power system;Liu;Proc. CESS,2017

3. A survey of energy storage technology for micro grid;Zhou;Power Syst. Prot. Control,2011

4. Composite usage of multi-type energy storage technologies in microgrid;Chen;Autom. Electr. Power Syst.,2010

5. The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry;Awerbuch,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3