Short Standing and Propagating Internal Waves in an Ice-Covered Shallow Lake

Author:

Bogdanov Sergey1ORCID,Zdorovennov Roman1,Palshin Nikolai1,Efremova Tatiana1,Zdorovennova Galina1ORCID

Affiliation:

1. Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences, Pushkinskaya St. 11, Petrozavodsk 185030, Russia

Abstract

The intensity of vertical heat and mass transfer remains among the challenging topics in the study of ice-covered lakes. Presumably, internal waves (IWs) make a significant contribution to the heat transfer in the water column. However, the mechanisms of mixing enhancement by generation, interaction, and breaking of IWs of different scales, especially short-wavelength ones, have not been sufficiently studied. Furthermore, the experimental data required for estimating the key parameters of IWs (wavelengths, propagation velocities) are rather fragmentary, which makes it difficult to quantify the turbulent transfer caused by IWs. This paper presents the estimates of these IW parameters based on data obtained in the winter months of 2014 and 2016 in a small boreal ice-covered lake. Having analyzed horizontally spaced thermistor chain data, we managed to detect the presence of short standing and propagating IWs, and to estimate their length (from several meters to several tens of meters) and phase and group velocities (from several mm/s to several tens of mm/s). Also, their vertical mode structure was detected. It was shown that IW generation events were characterized by a high degree of spatial localization, and the IW energy was unevenly distributed through the water column.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3