Abstract
This work describes the flow behavior of the oil recovery obtained by the injection of sulfate-modified/low-salinity water in micromodels with different wettabilities. It provides a detailed microscopic visualization of the displacement taking place during modified water flooding at a pore-scale level, while evaluating the effect of wettability on oil recovery. A comprehensive workflow for the evaluation is proposed that includes fluid–fluid and rock–fluid interactions. The methods studied comprise flooding experiments with micromodels. Artificial and real structure water-wet micromodels are used to understand flow behavior and oil recovery. Subsequently, water-wet, complex-wet, and oil-wet micromodels help understand wettability and rock–fluid interaction. The effect of the sulfate content present in the brine is a key variable in this work. The results of micromodel experiments conducted in this work indicate that sulfate-modified water flooding performs better in mixed-wet/oil-wet (artificial structure) than in water-wet systems. This slightly differs from observations of core flood experiments, where oil-wet conditions provided better process efficiency. As an overall result, sulfate-modified water flooding recovered more oil than SSW injection in oil-wet and complex-wet systems compared to water-wet systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献