Optimization Methods of Compressively Sensed Image Reconstruction Based on Single-Pixel Imaging

Author:

Wei Ziran,Zhang JianlinORCID,Xu Zhiyong,Liu Yong

Abstract

According to the theory of compressive sensing, a single-pixel imaging system was built in our laboratory, and imaging scenes are successfully reconstructed by single-pixel imaging, but the quality of reconstructed images in traditional methods cannot meet the demands of further engineering applications. In order to improve the imaging accuracy of our single-pixel camera, some optimization methods of key technologies in compressive sensing are proposed in this paper. First, in terms of sparse signal decomposition, based on traditional discrete wavelet transform and the characteristics of coefficients distribution in wavelet domain, a constraint condition of the exponential decay is proposed and a corresponding constraint matrix is designed to optimize the original wavelet decomposition basis. Second, for the construction of deterministic binary sensing matrices in the single-pixel camera, on the basis of a Gram matrix, a new algorithm model and a new method of initializing a compressed sensing measurement matrix are proposed to optimize the traditional binary sensing matrices via mutual coherence minimization. The gradient projection-based algorithm is used to solve the new mathematical model and train deterministic binary sensing measurement matrices with better performance. Third, the proposed optimization methods are applied to our single-pixel imaging system for optimizing the existing imaging methods. Compared with the conventional methods of single-pixel imaging, the accuracy of image reconstruction and the quality of single-pixel imaging have been significantly improved by our methods. The superior performance of our proposed methods has been fully tested and the effectiveness has also been demonstrated by numerical simulation experiments and practical imaging experiments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3