Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach

Author:

Rizzi Maria,Guaragnella CataldoORCID

Abstract

The establishment of automatic diagnostic systems able to detect and classify skin lesions at the initial stage are getting really relevant and effective in providing support for medical personnel during clinical assessment. Image segmentation has a determinant part in computer-aided skin lesion diagnosis pipeline because it makes possible to extract and highlight information on lesion contour texture as, for example, skewness and area unevenness. However, artifacts, low contrast, indistinct boundaries, and different shapes and areas contribute to make skin lesion segmentation a challenging task. In this paper, a fully automatic computer-aided system for skin lesion segmentation in dermoscopic images is indicated. Adopting this method, noise and artifacts are initially reduced by the singular value decomposition; afterward lesion decomposition into a frame of bit-plane layers is performed. A specific procedure is implemented for redundant data reduction using simple Boolean operators. Since lesion and background are rarely homogeneous regions, the obtained segmentation region could contain some disjointed areas classified as lesion. To obtain a single zone classified as lesion avoiding spurious pixels or holes inside the image under test, mathematical morphological techniques are implemented. The performance obtained highlights the method validity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bit Plane Slicing Chip Using Parallel Processing in Image Processing;National Academy Science Letters;2023-08-19

2. A survey, review, and future trends of skin lesion segmentation and classification;Computers in Biology and Medicine;2023-03

3. Image Analysis and Diagnosis of Skin Diseases - A Review;Current Medical Imaging Reviews;2023-03

4. FPGA-Based Decision Support System for ECG Analysis;Journal of Low Power Electronics and Applications;2023-01-07

5. SEGMENTATION OF THE MELANOMA LESION AND ITS BORDER;INT J AP MAT COM-POL;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3