Small-Size Square Ring 1-Bit Reconfigurable Transmitarray Unit Cell for C-Band Applications

Author:

Kirillov Vitalii,Munina Irina,Turalchuk PavelORCID

Abstract

The paper presents a reconfigurable linear polarized transmitarray unit cell design with 1-bit phase quantization for C-band applications. The unit-cell structure consists of two square ring patches of reduced size, which are connected using a coupling element. Incorporating p-i-n diodes inside the coupling element allows controlling the current flow direction in the antennas and providing a 180° phase difference. An analysis of the unit-cell insertion loss contributed by small-size antennas and coupling between them is discussed. The p-i-n diode parasitic parameters are taken into consideration of the unit cell performance simulation. It was shown that the insertion loss caused by the p-i-n diodes parasitic parameters can be reduced. The original biasing circuitry providing p-i-n diodes control voltage is proposed. Simulation results of the reconfigurable unit cell are validated by measurements in a waveguide. As a result of measurements, the insertion loss is −2.3 dB at 5.9 GHz, the reflection coefficient module is less than −20 dB, the phase difference error does not exceed ± 1° in the passband, while 3-dB bandwidth corresponds to 180 MHz (3.4%).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of 1-bit low-loss electronically controlled transmission array antenna for beam focusing and scanning;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

2. 1-Bit Hexagonal Meander-Shaped Wideband Electronically Reconfigurable Transmitarray for Satellite Communications;Electronics;2023-04-22

3. A Generalized Nonlinear Model of 1-bit PIN-diode Based Transmitarray Unit Cell;2022 International Workshop on Antenna Technology (iWAT);2022-05-16

4. Design of Dual Band Patch Antenna and Miniaturization Using Resonators for Sub-6-GHz Applications;2021 IEEE Indian Conference on Antennas and Propagation (InCAP);2021-12-13

5. Cross-Polarization Reduction in Reconfigurable Transmitarray Unit Cell;2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus);2021-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3