Rendering Mortars with Low Sand and Cement Content. Incorporation of Sanitary Ware Waste and Forest Biomass Ashes

Author:

Brazão Farinha CatarinaORCID,de Brito JorgeORCID,Veiga RosárioORCID

Abstract

The incorporation of wastes in new materials and products is an emerging trend, reducing virgin materials’ consumption and landfill deposition and the associated environmental impacts. Cement-based mortars can encapsulate some wastes, with the benefits stated above. In three previous researches, it was found that forest biomass bottom ashes (up to 15% by volume of cement), powder of sanitary ware (up to 20% by volume of sand) and sanitary ware particles above 2 mm (100% by volume of sand) can be incorporated in rendering mortars, replacing cement or sand. Several tests were performed, and it was found that each waste’s incorporation presents advantages and limitations, when compared with a reference mortar. In this research, the aim was to take advantage of the best features of each waste, combining them in order to optimize the new mortars’ characteristics. Therefore, mortars with one, two and three wastes were analysed in this research. The ternary mix mortar had a volume of wastes equal to 83%, resulting in a mortar with 15% less cement (by volume) and without any natural aggregate (all replaced with the sanitary ware wastes). The fresh, water and mechanical behaviour of the mortars with and without wastes are presented in this research. It was concluded that it is possible to take advantage of the best features of each waste and achieve mortars simultaneously with high volume of wastes and a better performance than the reference mortar (without wastes).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Environmental Product Declaration Report. Portland-Composite Cement (CEM II) Produced in Europe 2015https://cembureau.eu/media/1255/6117_cembureau_epd_cemii_2015-02-01.pdf

2. The effect of using sanitary ware as aggregates on rendering mortars' performance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3