Detection of Non-Technical Losses Using SOSTLink and Bidirectional Gated Recurrent Unit to Secure Smart Meters

Author:

Gul Hira,Javaid NadeemORCID,Ullah IbrarORCID,Qamar Ali Mustafa,Afzal Muhammad Khalil,Joshi Gyanendra PrasadORCID

Abstract

Energy consumption is increasing exponentially with the increase in electronic gadgets. Losses occur during generation, transmission, and distribution. The energy demand leads to increase in electricity theft (ET) in distribution side. Data analysis is the process of assessing the data using different analytical and statistical tools to extract useful information. Fluctuation in energy consumption patterns indicates electricity theft. Utilities bear losses of millions of dollar every year. Hardware-based solutions are considered to be the best; however, the deployment cost of these solutions is high. Software-based solutions are data-driven and cost-effective. We need big data for analysis and artificial intelligence and machine learning techniques. Several solutions have been proposed in existing studies; however, low detection performance and high false positive rate are the major issues. In this paper, we first time employ bidirectional Gated Recurrent Unit for ET detection for classification using real time-series data. We also propose a new scheme, which is a combination of oversampling technique Synthetic Minority Oversampling TEchnique (SMOTE) and undersampling technique Tomek Link: “Smote Over Sampling Tomik Link (SOSTLink) sampling technique”. The Kernel Principal Component Analysis is used for feature extraction. In order to evaluate the proposed model’s performance, five performance metrics are used, including precision, recall, F1-score, Root Mean Square Error (RMSE), and receiver operating characteristic curve. Experiments show that our proposed model outperforms the state-of-the-art techniques: logistic regression, decision tree, random forest, support vector machine, convolutional neural network, long short-term memory, hybrid of multilayer perceptron and convolutional neural network.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3