State Estimation for DC Microgrids using Modified Long Short-Term Memory Networks

Author:

Adi Faya Safirra,Lee Yee Jin,Song HwachangORCID

Abstract

The development of state estimators for local electrical energy supply systems is inevitable as the role of the system’s become more important, especially with the recent increased interest in direct current (DC) microgrids. Proper control and monitoring requires a state estimator that can adapt to the new technologies for DC microgrids. This paper mainly deals with the DC microgrid state estimation (SE) using a modified long short-term memory (LSTM) network, which until recently has been applied only in forecasting studies. The modified LSTM network for the proposed state estimator adopted a specifically weighted least square (WLS)-based loss function for training. To demonstrate the performance of the proposed state estimator, a comparison study was done with other SE methods included in this paper. The results showed that the proposed state estimator had high accuracy in estimating the states of DC microgrids. Other than the enhanced accuracy, the deep-learning-based state estimator also provided faster computation speeds than the conventional state estimator.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on distribution system state estimation uncertainty issues using deep learning approaches;Renewable and Sustainable Energy Reviews;2023-11

2. The Cost and Benefit of Enhancing Cybersecurity for Hybrid AC/DC Grids;IEEE Transactions on Smart Grid;2023-11

3. Enhanced Power System State Estimation Using Machine Learning Algorithms;2023 International Conference on System Science and Engineering (ICSSE);2023-07-27

4. Adversarial Attacks on Machine Learning-Based State Estimation in Power Distribution Systems;Proceedings of the 14th ACM International Conference on Future Energy Systems;2023-06-16

5. Stochastic voltage estimation for islanded DC grids;Electric Power Systems Research;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3