Abstract
The development of state estimators for local electrical energy supply systems is inevitable as the role of the system’s become more important, especially with the recent increased interest in direct current (DC) microgrids. Proper control and monitoring requires a state estimator that can adapt to the new technologies for DC microgrids. This paper mainly deals with the DC microgrid state estimation (SE) using a modified long short-term memory (LSTM) network, which until recently has been applied only in forecasting studies. The modified LSTM network for the proposed state estimator adopted a specifically weighted least square (WLS)-based loss function for training. To demonstrate the performance of the proposed state estimator, a comparison study was done with other SE methods included in this paper. The results showed that the proposed state estimator had high accuracy in estimating the states of DC microgrids. Other than the enhanced accuracy, the deep-learning-based state estimator also provided faster computation speeds than the conventional state estimator.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献