A Novel 2D Model for Freezing Phase Change Simulation during Cryogenic Fracturing Considering Nucleation Characteristics

Author:

Huang Chengyu,Wang Wenhua,Li Weizhong

Abstract

A 2D computational fluid dynamics (CFD) model in consideration of nucleation characteristics (homogeneous/heterogeneous nucleation) using the volume of fluid (VOF) method and Lee model was proposed. The model was used to predict the process of a multiphase flow accompanied by freezing phase change during cryogenic fracturing. In this model, nucleation characteristic (homogeneous and heterogeneous nucleation) during the freezing process and the influence of the formed ice phase on the flowing behavior was considered. Validation of the model was done by comparing its simulation results to Neumann solutions for classical Stefan problem. The comparison results show that the numerical results are well consistent with the theoretical solution. The maximum relative differences are less than 7%. The process of multiphase flow accompanied by the freezing of water was then simulated with the proposed model. Furthermore, the transient formation and growth of ice as well as the evolution of temperature distribution in the computational domain was studied. Results show that the proposed method can better consider the difference between homogeneous nucleation in the fluid domain and heterogeneous nucleation on the wall boundary. Finally, the main influence factors such as the flow velocity and initial distribution of ice phase on the fracturing process were discussed. It indicates that the method enable to simulate the growth of ice on the wall and its effect on the flow of multiphase fluid.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3