Application of a Novel Film Sealant Technology for Penetrating Corneal Wounds: An Ex-Vivo Study

Author:

Tan JackieORCID,Foster Leslie John Ray,Watson Stephanie Louise

Abstract

Aim: To compare the burst pressures of corneal wounds closed with a laser-activated, chitosan-based thin film adhesive against self-seal, sutures and cyanoacrylate. Methods: 2, 4 or 6 mm penetrating corneal wounds were created on 100 freshly enucleated bovine eyes. The wounds were closed using a laser-activated chitosan adhesive (n = 30), self-sealed (control) (n = 30), sutures (n = 20) or cyanoacrylate glue (Histoacryl®) (n = 20). The corneoscleral rim was dissected and mounted onto a custom burst pressure testing chamber. Water was pumped into the chamber at 9ml/hr. The fluid pressure prior to wound leakage was recorded as the ‘burst pressure’. Results: The burst pressure for the 2, 4 and 6 mm wounds were 239.2 mmHg (SD = ±102.4), 181.7 mmHg (SD = ±72.8) and 77.4 mmHg (SD = ±37.4) (p < 0.00001), respectively, for chitosan adhesive. Burst pressure was 36.4 mmHg (SD = ±14.7), 4.8 mmHg (SD = ±4.9) and 2.7 mmHg (SD = ±1.3) (p < 0.00001), respectively, for the self-sealed group. For 4 and 6mm wounds, burst pressures with sutures were 33.0 mmHg (SD = ±19) and 23.5 mmHg (SD = ±17.4) (p = 0.0087), respectively. For cyanoacrylate, burst pressures for 2 and 4 mm wounds were 698 mmHg (SD = ±240.3) and 494.3 mmHg (SD = ±324.6) (p = 0.020087), respectively. Conclusion: This laser-activated chitosan-based adhesive sealed bovine corneal wounds up to 6 mm in length. Burst pressure was higher for the adhesive than sutured or self-sealed wounds, but lower than for cyanoacrylate.

Funder

National Health and Medical Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3